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1 3-j Symbols

Remember that for two irreducible representations of SU(2) we had that Va⊗Vb
decomposes into a direct sum

Va+b ⊕ Va+b−2 · · · ⊕ V|a−b|.

We want to know if a given representation Vc appears in Va ⊗ Vb, but this
the same as asking if hom(Vc, Va ⊗ Vb) contains an SU(2) invariant element.
But this is canonically isomorphic to Va ⊗ Vb ⊗ V ∗c which is again, canonically
isomorphic to Va⊗ Vb⊗ Vc. So Vc appear in Va⊗ Vb iff the SU(2) invariant V0
appears (exactly once) in this triple product.

In particular Va⊗ Vb has an SU(2) invariant part iff a = b. (interpretation
physically). More generally, we need a, b, c to satisfy a triangle inequality. If
we have vj ∈ Vc(j) then we can rewrite this as vj =

∑
j′,j′′ cj,j′,j′′vj′ ⊗ vj′′ .

These cs are unique (up to an overall scalar) and are called the 3j symbols.

2 Introduction to 6-j Symbols

Now note that because tensoring is canonically associative:

Vk ⊗ (Vn ⊗ Vm) ∼= (Vk ⊗ Vn)⊗ Vm
We can write the left hand side as

∼=
n+m⊕

`=|n−m|

Vk ⊗ V` ∼=
k+⊕̀

s=|k−`|

n+m⊕
`=|n−m|

Vs

where the
⊕

i is with a step size of 2, not 1. On the other hand, the right
hand side is similarly:
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∼=
k+n⊕

r=|k−n|

Vr ⊗ Vm ∼=
r+m⊕

s=|r−m|

k+n⊕
r=|k−n|

Vs.

So we can express vectors in this triple tensor space either in terms of the
weight basis associated with a set of weight spaces |k, n,m, `, s〉 or the weight
basis |k, n,m, r, s〉. In quantum physics, these would be the eigenbasis for
measurements of the three particles, coupling 1-2, and total spin and the
eigenbasis for measurements of the three particles, coupling 2-3, and total
spin, respectively. The change of basis is given by:

|j1, j2, j3, j12, J〉 =
∑
r

〈j1, j2, j3, j23, J |j1, j2, j3, j12, J〉 |j1, j2, j3, j23, J〉

The 6j symbols are then defined as:

{
j1 j2 j12
j3 J j23

}
= (−1)(j1+j2+j3+J)/2

〈j1, j2, j3, j23, J |j1, j2, j3, j12, J〉√
(j12 + 1)(j23 + 1)

note, above, we did not use physics convention for the ji, but instead mathe-
matical representation theoretic convention (with the factor of 2). The strange
square roots in the denominator serve to put j12, j23 on equal footing with the
rest of the ji, so that the 6j symbols can obtain their notable tetrahedral
symmetry structure.

3 Action on Homogenous Polynomial Spaces

From before, we know Va for SU(2) acts on the space of degree a polynomials
on C2. We know there is an SU(2) invariant part of Va ⊗ Va, and we can call
this εaa. If we view the representation as acting on polynomials, we get that
this element is a polynomial on C2 ⊕ C2:

(Z1W2 −W1Z2)
a

where we have raised to the power a to ensure its a degree 2a polynomial on
which V ⊗2a can act. Now from before we know that the SU(2) invariant part of
Va⊗Vb⊗Vc is either dimension one or trivial from the triangle conditions. The
invariant element εabc is a little bit trickier here. SU(2) acts on C2⊕C2⊕C2.
The elements like Z1W2 −W1Z2, Z1W3 −W1Z3, and Z2W3 −W2Z3. We need
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the powerso of Z1,W1 to have degree a, Z2,W2 to have degree b and Z3,W3 to
have degree c. The right way to do this is to write:

εabc = (Z1W2 −W1Z2)
(a+b−c)/2(Z1W3 −W1Z3)

(a+c−b)/2(Z2W3 −W2Z3)
(b+c−a)/2

We rescale εaa, etc. to have norm
√
a+ 1 and εabc to have norm 1. Now if

we have six irreps, Va, . . . , Vf , then u = εaa ⊗ · · · ⊗ εff exist within a 12-fold
tensor product and v = εabc ⊗ εcde ⊗ εefa ⊗ εfdb also exists there.

We can then take the inner product of these two SU(2)-invariant vectors
and obtain: {

a b c
d e f

}
= (−)a+b+c+d+e+f (u, v)

Note these are invariant under the action of the tetrahedral group A4.

We are going to consider how three particles can combine angular momenta
to form a final system. In the following diagram j1, j2, j3 combine to form J .
In particular, given that j1 and j2 combine to get j12 then we can also ask how
can j1, j3 combine to get j13... this gives the following tetrahedron.

The 6j symbol associated with it can be viewed as a sort of matrix element,
and just as quantum mechanics always predicts, the square of a matrix element
is a associated to a probability. In this case, it is the probability that given
j1, j2 combine to get j12, we have j1, j3 combine for j13
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4 The Formula

This paper explores an asymptotic formula for the 6j symbols, which was be-
fore noticed by physicists Ponzano and Regge (without proof, because they’re
physicsts). {

ka kb kc
kd ke kf

}
≈
√

2

3πV k3
cos

(∑
a

(ka+ 1)
θa
2

+
π

4

)
for euclidean tetrahedra, and “exponentially decaying” for icosahedral ones.

Wigner used some reasoning to expect the square of the 6j symbols, the
physical observable probability discussed above, to go as{

ka kb kc
kd ke kf

}2

≈ 1

3πV

There are very fast oscillations in the 6j symbols, so this represents a sort
of “local average” rather than an honest-to-god approximation.

5 Some Background

What makes a Manifold M Kahler? Let it be 2n real dimensional, and on
each tangent space Tp(M) it posseses a real-valued Riemannian metric B and
symplectic form ω. We let them be J invariant by: B(JX, JY ) = B(X, Y )
and ω(JX, JY ) = ω(X, Y ). We also relate them by: B(X, Y ) = ω(X, JY )

Then since ω is antisymmetric while B is symmetric we get h = B(X, Y )−
iω(X, Y ) is now a bilinear form on Tp(M) mapping into C that is Hermitian
in X, Y .

We call a bilinear form h : V × V → C Hermitian if h(w, z) = h(z, w)

If G acts symplectically on M (it preserves ω), that is the vector fields Xg

have LXgω = 0. Then we have ways of going between elements ξ ∈ g defining
vector field Xξ and a Hamiltonian H = µ(ξ) so that dH = ιXξω = ω(Xξ,−).
Obtaining a Hamiltonian from a given vector field is a well-known process,
and we can write H = µ(Xξ) sometimes.

The k+ 1 irrep of SU(2) Vk is obtained from S2 = P1 by giving it a round
metric and a hermitian line bundle L⊗k (meaning the space of all homogenous
polynomials of Z,W of degree k). On the Lie algebra U(1) of the circle choose
ξ so that we have Xξ = 2π ∂

∂θ
, i.e. eξ = 1.
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6 Stationary Phase Formula

For a complex function φ with isolated critical points on a manifold of complex
dimension n and volume form Ω, we have that the value of the integral:∫

M

ekψΩ ≈
(

2π

k

)n ∑
p critical

ekψ(p)√
−Hessp(ψ)

7 Example Calculation

7.1 Finding the norm of sk

Take the section sk : (Z,W ) 7→ ZkW k ∈ C, and in the complement of infinity:
(0, 1), we can trivialize W 6= 0. So let our coordinate by ζ = Z/W . The
pointwise norm at ζ of b2k is given by taking (ζ, 1) and normalizing to give

(ζ,1)√
1+|ζ|2

, which under b2k gets mapped to 1
(1+|ζ|2)k , and similarly the pointwise

norm of sk here is |ζ|k
(1+|ζ|2)k .

Using stereographic projection we can write ζ = x+iy
1−z , 1/(1 + |ζ|2) = (1−

z)/2 and |ζ|2/(1 + |ζ|2) = (1 + z)/2. We then have that at a point,
〈
sk, sk

〉
=

|ζ|2k
(1+|ζ|2)2k =

(
1−z2
4

)k
. Now what’s the global square of the norm?

||sk||2 =

∫
S2

(
1− z2

4

)k
Ω =

∫
S2

(
1− z2

4

)k
2k

1

4π
dθ ∧ dz

= 2k

∫ 1

−1

1

2

(
1− z2

4

)k
dz = 2k

Γ2(k + 1)

Γ(2k + 2)

Using Sterling’s approximation, this goes as
√
πk 4−k

7.2 Matrix elements of SO(3) under rotation

Let V2k be an irrep of SO(3) (only even ones can be), and let S1
z be the circle

group fixing z. V2k splits into a (basis dependent) sum of 1-D weight spaces
−2k, 2k, 2, fixed by S1

z . For a rotation g, we can compute matrix elements by
using a hermitian pairing on each tangent space (v, gv) and integrating. Let’s
do this for when v is the zero weight vector.

Then gv is a zero-weight vector for gS1
zg
−1 = Sgz, the subgroup fixing axis

gz. These matrix elements allow for a change-of-basis.
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Pick a section s of Lotimes2 that is S1
z invariant and peaks at z = 0, then so

does s⊗k. This is not normalized, but we can compute the Rayleigh quotient:

(v
(k)
0 , gv

(k)
0 ) =

(sk, gsk)

(sk, sk)

We’ve already done the denominator. Now for the numerator:

(sk, gsk) =

∫
S2

〈
sk, gsk

〉
2kω = k

∫
S2

〈s, gs〉k 2ω = k

∫
S2

ekψ 2ω

with ψ = 〈s, gs〉. Now we need to look for the stationary parts of ψ.
We know when s and gs are maximized, individually. Together, they’ll be
maximized at these two antipodal points N and S:

Now X 〈s, gs〉 = 〈∇Xs, gs〉 + 〈s,∇Xgs〉. The first one has ∇Xs = −Xs +
2πiµ(〈s, gs〉) from the Konstant quantization formula and this is just 2πiµs.
The second term in gs can be manipulated if we write X = pY + qJY since
Y, JY span the tangent space. All together, this gives:

Xψ = 2πiµ(ψ)− 2πipν(ψ)− 2πqν(ψ)

And similarly since Y = p′X + q′JX we get

Y ψ = −2πiν(ψ) + 2πip′µ(ψ) + 2πq′µ(ψ)

Now we want the Hessian, so note Xµ = 2ω(X,X) = 0 = Y ν. On the
other hand Xν = 2ω(Y,X) = −Y µ.

Thus our matrix of second derivatives is:
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−2πi(−2ω(X, Y ))

(
eiβ 1
1 eiβ

)
and that gives a corresponding Hessian determinant (the ω(X, Y ) cancels

when calculating everything):

HessN = −8π2i sin
(
βeiβ

)
where β is the angle. The Hessian at S is just the complex conjugate to

this.
The last thing we need is eψ(N), eψ(S). For the latter, we get

eψ(S) = 〈s, gs〉 (S) =
〈
hh−1s(hN), ghh−1s(hN)

〉
= 〈hs(N), ghs(N)〉 =

〈
s(N), h−1ghs(N)

〉
This last bit is just a clockwise rotation at N ’s tangent space, which acts

just like e−iβ. Similarly for N it would act as eiβ. All together this gives us
our matrix element at long last:

(sk, gsk) = k
2π

k

(
e−iβ√

8π2i sin(β)eiβ
+

eiβ√
−8π2i sin(β)e−iβ

)
Dividing by (s, s) ≈

√
πk we get the final result:

(v
(k)
0 , gv

(k)
0 ) ≈

√
2

πk sin β
cos

(
(2k + 1)

β

2
+
π

4

)
The modulus comes partly from the Hessian and the normalization factor

in the previous subsection. The π/4 is a standard phase convention.

8 The Calculation for the 6j symbols

Going back, the 6j symbol was also an inner product of two SU(2) invariant
vectors in a 12-fold tensor product.

The irrep Va can be identified with a sphere of radius a, with symplectic
form given by ωx(v, w) = 1

4πa3
x.(v×w). The complex structure Jx(v) = 1

a
x×v.

The metric is then naturally Bx(v, w) = v.w, just like the regular metric.
The group SO(3) acts on the sphere, and µ can be obtained in the obvious

way (explain this).
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Tensor products of irreducibles can be viewed as line bundles over cartesian
products of the spaces.

Now we form our manifold M like:

S2
a × S2

b × S2
c × S2

c × S2
d × S2

e × S2
e × S2

f × S2
a × S2

f × S2
d × S2

b

This lies in (R3)12 and a vector on it can be denoted by (x1, . . . , x12).
G = SO(3) acts on the sphere, preserving Kahler structure, and when Va has
a even, it acts on the corresponding line bundle as well.

Now G has three actions worth noting. Firstly, it can act diagonally on all
12 spheres, giving a moment map φ(x1, . . . , x12) =

∑
i xi. This is algebraically

the same as G acting diagonally on the tensor of the 12 irreps.
ALso, G can act by G4 on the first set of three spheres, the second, etc,

each copy acting diagonally on each set of 3 spheres.
The moment map is

µ(x1, . . . , x12) = (x1 + x2 + x3, x4 + x5 + x6, x7 + x8 + x9, x10 + x11 + x12)

We have a well-defined invariant section s̃µ = sabc ⊗ · · · ⊗ sfdb.
Lastly G6 can act, each copy acting diagonally on pairs of V ’s of the same

weight.
We have a well-defined invariant section s̃ν = saa ⊗ · · · ⊗ sff .
From the very beginning, in the definition of the 6j symbols we get{

a b c
d e f

}
= (−)a+b+c+d+e+f

(s̃µ, s̃ν)

||s̃µ||||s̃ν ||
∏
a

(a+ 1)

This can be written into:{
ka kb kc
kd ke kf

}
= (−)a+b+c+d+e+f

(s̃kµ, s̃
k
ν)

||s̃kµ||||s̃kν ||
∏
a

(ka+ 1)

There are three integrals we need to do.

8.1 Integrals in the Denominator

Theorem 1. Let s̃1, s̃2 be G-invariant sections of the line bundle L over M
and let s1, s2 be the corresponding sections on the quotient LG over MG. Then

(s̃1, s̃2) =

∫
M

〈
s̃k1, s̃

k
2

〉
knΩ ≈

(
k

2

)d/2 ∫
p∈MG

〈
sk1, s

k
2

〉
Vol(Gp)kn−dΩG
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The proof requires some further knowledge of geometric invariant theory.

Applying this to MG4 ,MG6 and noting that they are single-point spaces,

||s̃kµ||2 ≈
(
k

2

)6

Vol(µ−1(0))

||s̃kν ||2 ≈
(
k

2

)6

Vol(ν−1(0))

It remains to calculate (s̃kµ, s̃
k
ν). As before, we care about the place where

both moment maps are zero. That condition on ν requires all the xi to sum
to zero (6 are the negatives of the other six). The condition on µ forces each
of those 6 to form a (euclidean) tetrahedron. If a euclidean tetrahedron can’t
be formed, then µ−1(0) ∩ ν−1(0) = ∅ and we only have exponential decay of
the 6j symbols, as desired. Otherwise there is a critical point.

The remainder of it requires using the stationary trick and computing the
Hessian which is, in the authors words, “frustratingly difficult”, so we just
write it here for completeness
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9 Question

Can similar geometrically-meaningful formulae be obtained for general spin
networks, the so-called 3nj symbols?
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